Glossary of Symbols

Throughout this book, a few formulas are repeated for easier reference during reading. In such cases, the repeated earlier equation number is typeset in italics, like in (4.11).

\(a_k, b_k \)
Fourier coefficients

\(A \)
signal amplitude

\(A_{pp} \)
signal peak-to-peak amplitude

\(A^T \)
transpose of \(A \)

\(A^* \)
complex conjugate transpose of \(A \)

\(\bar{A} \)
complex conjugate of \(A \)

\(B \)
bandwidth, or the number of bits in a fixed-point number

\(\text{cov}\{x, y\} \)
covariance, page 42

\(C(\tau) \)
covariance function

\(d \)
dither, page 485

\(\frac{dx}{dt} \)
derivative

\(\exp(\cdot) \)
exponential function, also \(e^{(\cdot)} \)

\(E(f) \)
energy density spectrum

\(E\{x\} \)
expected value (mean value)

\(f \)
frequency

\(f_s \)
sampling frequency, sampling rate

\(f_0 \)
center frequency of a bandpass filter

\(f_1 \)
fundamental frequency, or first harmonic

\(f_x(x) \)
probability density function (PDF), page 31

\(F_x(x) \)
probability distribution function, \(F_x(x_0) = P(x < x_0) \)

\(\Phi_x(u) \)
characteristic function (CF): \(\Phi_x(u) = \int_{-\infty}^{\infty} f_x(x) e^{jux} \, dx = E\{e^{jux}\} \)

Eq. (2.17), page 27

\(\mathcal{F}\{\cdot\} \)
Fourier transform: \(\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} \, dt \)

for the PDF–CF pair, the Fourier transform is defined as \(\int_{-\infty}^{\infty} f(x) e^{jux} \, dx \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{F}^{-1}{\cdot}$</td>
<td>inverse Fourier transform: $\mathcal{F}^{-1}{X(f)} = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} , df$ for the PDF–CF pair, the inverse Fourier transform is $\frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi(u)e^{-jux} , du$</td>
</tr>
<tr>
<td>$h(t)$</td>
<td>impulse response</td>
</tr>
<tr>
<td>$H(f)$</td>
<td>transfer function</td>
</tr>
<tr>
<td>$\text{Im}{\cdot}$</td>
<td>imaginary part</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>k</td>
<td>running index in time domain series</td>
</tr>
<tr>
<td>$\lg(\cdot)$</td>
<td>base-10 logarithm</td>
</tr>
<tr>
<td>$\ln(\cdot)$</td>
<td>natural logarithm (base e)</td>
</tr>
<tr>
<td>M_r</td>
<td>rth moment difference with PQN: $E{(x')^r} - E{x'^r}$ Eq. (4.27), page 81</td>
</tr>
<tr>
<td>\tilde{M}_r</td>
<td>rth centralized moment difference with PQN: $E{(\tilde{x}')^r} - E{\tilde{x}'^r}$</td>
</tr>
<tr>
<td>n</td>
<td>pseudo quantization noise (PQN), page 69</td>
</tr>
<tr>
<td>N</td>
<td>number of samples</td>
</tr>
<tr>
<td>N_r</td>
<td>small (usually negligible) terms in the rth moment: $E{(x')^r} = E{x'^r} + M_r + N_r$, Eq. (B.1) of Appendix B, page 597</td>
</tr>
<tr>
<td>\tilde{N}_r</td>
<td>small (usually negligible) terms in the rth centralized moment: $E{(\tilde{x}')^r} = E{\tilde{x}'^r} + \tilde{M}_r + \tilde{N}_r$</td>
</tr>
<tr>
<td>$N(\mu, \sigma)$</td>
<td>normal distribution, page 49</td>
</tr>
<tr>
<td>$O(x)$</td>
<td>decrease as quickly as x for $x \to 0$</td>
</tr>
<tr>
<td>p</td>
<td>precision in floating-point</td>
</tr>
<tr>
<td>p_i</td>
<td>probability</td>
</tr>
<tr>
<td>$P{\cdot}$</td>
<td>probability of an event</td>
</tr>
<tr>
<td>q</td>
<td>quantum size in quantization, page 25</td>
</tr>
<tr>
<td>q_d</td>
<td>quantum size of a digital dither, page 686</td>
</tr>
<tr>
<td>q_h</td>
<td>step size of the hidden quantizer, page 357</td>
</tr>
<tr>
<td>Q</td>
<td>quality factor or weighting coefficient</td>
</tr>
<tr>
<td>$R(\tau)$</td>
<td>correlation function, Eq. (3.40), page 42</td>
</tr>
<tr>
<td>$R_{xy}(\tau)$</td>
<td>crosscorrelation function, $R_{xy}(\tau) = E{x(t)y(t+\tau)}$ Eq. (3.41), page 42</td>
</tr>
<tr>
<td>R_r</td>
<td>residual error of Sheppard’s rth correction Eq. (B.7) of Appendix B, page 602</td>
</tr>
<tr>
<td>\tilde{R}_r</td>
<td>residual error of the rth Kind correction</td>
</tr>
<tr>
<td>$\text{Re}{\cdot}$</td>
<td>real part</td>
</tr>
<tr>
<td>$\text{rect}(z)$</td>
<td>rectangular pulse function, 1 if $</td>
</tr>
<tr>
<td>$\text{rectw}(z)$</td>
<td>rectangular wave, 1 if $-0.25 \leq z < 0.25$; -1 if $0.25 \leq z < 0.75$; repeated with period 1</td>
</tr>
<tr>
<td>s</td>
<td>Laplace variable, or empirical standard deviation</td>
</tr>
<tr>
<td>s^*</td>
<td>corrected empirical standard deviation</td>
</tr>
<tr>
<td>S_r</td>
<td>Sheppard’s rth correction, Eq. (4.29), page 82</td>
</tr>
</tbody>
</table>
Glossary of Symbols

\(\tilde{S}_r \) \(r \)th Kind correction

\(S(f) \) power spectral density

\(S_c(f) \) covariance power spectral density

\(\text{sign}(x) \) sign function

\(\text{sinc}(x) = \frac{\sin(x)}{x} \)

\(T \) sampling interval

\(T_m \) measurement time

\(T_p \) period length

\(T_r \) record length

\(\text{tr}(z) \) triangular pulse function, \(1 - |z| \) if \(|z| \leq 1 \), zero elsewhere

\(\text{trw}(z) \) triangular wave, \(1 - 4|z| \) if \(|z| \leq 0.5 \), repeated with period 1

\(u \) standard normal random variable

\(u(t) \) time function of voltage

\(U \) effective value of voltage

\(U_p \) peak value

\(U_{pp} \) peak-to-peak value

\(\text{var}\{x\} \) variance, same as square of standard deviation: \(\text{var}\{x\} = \sigma_x^2 \)

\(w(t) \) window function in the time domain

\(W(f) \) window function in the frequency domain

\(x \) random variable

\(x' \) quantized variable

\(x' - x \) quantization noise, \(\nu \)

\(\tilde{x} \) centralized random variable, \(x - \mu_x \), Eq. (3.13), page 34

\(x(t) \) input time function

\(X(f) \) Fourier transform of \(x(t) \)

\(X(f, T) \) finite Fourier transform of \(x(t) \)

\(z^{-1} \) delay operator, \(e^{-j2\pi fT} \)

\(\delta \) angle error

\(\Delta f \) frequency increment, \(f_s/N \) in DFT or FFT

\(\epsilon \) error

\(\epsilon_c \) width of confidence interval

\(\epsilon_r \) relative error

\(\phi \) phase angle

\(\gamma(f) \) coherence function: \(\gamma(f) = \frac{S_{xy}(f)}{\sqrt{S_{xx}(f)S_{yy}(f)}} \)

\(\mu \) mean value (expected value)

\(\nu \) quantization error, \(\nu = x' - x \)

\(\Psi \) quantization fineness, \(\Psi = \frac{2\pi}{q} \)

\(\omega \) radian frequency, \(2\pi f \)

\(\Omega \) sampling radian frequency, page 17

\(\rho \) correlation coefficient (normalized covariance, \(\frac{\text{cov}\{x, y\}}{\sigma_x \sigma_y} \))

Eq. (3.39), page 42
\[\rho(t)\] normalized covariance function
\[\sigma\] standard deviation
\[\Sigma\] covariance matrix
\[\tau\] lag variable (in correlation functions)
\[\zeta\] \(\zeta = d + v\), total quantization error (in nonsubtractive dithering)
\[\in\] element of set, value within given interval
\[\ast\] convolution:
\[
\int_{-\infty}^{\infty} f(z)g(x-z)\,dz = \int_{-\infty}^{\infty} f(x-z)g(z)\,dz
\]
\[\triangleq\] definition
\[\dot{\Phi}\] first derivative, e. g. \(\dot{\Phi}_x(l|\Psi) = \frac{d\Phi(u)}{du} \bigg|_{u=l|\Psi}\)
\[\ddot{\Phi}\] second derivative, e. g. \(\ddot{\Phi}_x(l|\Psi) = \frac{d^2\Phi(u)}{du^2} \bigg|_{u=l|\Psi}\)
\[x'\] quantized version of variable \(x\)
\[\tilde{x}\] centralized version of variable \(\tilde{x} = x - \mu_x\), Eq. (3.13), page 34
\[\hat{x}\] estimated value of random variable \(x\)
\[\lfloor x \rfloor\] nearest integer smaller than or equal to \(x\) (floor\((x)\))
\[\check{x}\] deviation from a given value or variable